Avoiding neuroinflammation: how the coevolution between the mammalian brain and the parasite *Toxoplasma gondii* might help us maintain high levels of cognition

Anita Koshy, M.D. October 23, 2013 Evelyn F. McKnight Brain Institute Meeting University of Arizona

Aging & Cognition

- Aging associated brain changes
 - Increased pro-inflammatory state
 - Declining cellular functions (autophagy)

Neuroinflammation:

- Immune cells and cytokines in the brain
- Dynamic interplay between immune cells and cells of the brain (astrocytes, neurons)
- If we can improve the brain environment/ inflammatory state, can we improve normal cognition?

Exploiting the CNS-Toxoplasma interaction

Harness evolution

- Humans and microbes have interacted for 1000s of years
- Co-evolution
- Are there microbes that persist in the brain?
 - Brain "commensals"

Toxoplasma gondii

Koshy Lab

Understanding CNS-Toxplasma interaction

 Defining these interactions will give us insights into mediators of CNS immune responses
 Role of neurons and astrocytes

These insights will lead to better ways to manipulate neuroinflammation

How might *Toxoplasma* manipulate the CNS?

Direct effects

- Toxoplasma known to inject effector proteins into cells it invades
- Cell infected with *Toxoplasma* are highly manipulated (including neurons in which *Toxoplasma* persists)

Indirect effects

Immune response to *Toxoplasma* may change astrocyte/neurons/microglia

How does Toxoplasma persist in the CNS?

Toxoplasma inject effector proteins when it invades a host cell

Toxoplasma-Cre system marks host cells that have interacted with Toxoplasma

Toxoplasma-Cre marks CNS cells even weeks after infection

Many more uninfected-interacted CNS cells compared to infected cells

Most uninfected CNS cells consistent with neurons

How are uninfected-interacted neuron arising?

*Pilot grant to see if neuronal autophagy involved

Summary

 Toxoplasma-CNS interactions can be used to understand fundamental neurobiology

Neurons may be able to clear *Toxoplasma* Stimulation of neuronal autophagy?

What is the effect of chronic toxoplasmosis on the global CNS environment?

Ultimate goal: improve overall brain health

Koshy Lab Hans Dietrich Carla Cabral Shraddha Tuladhar Elizabeth Nguyen Patrick O'Connor* Dana Zack* Adriana Rodriguez Cruz*

Boothroyd lab John Boothroyd To numerous to mention

Thank you

 National Institute of Neurological Disorders and Stroke

National Institutes of Health

BIO5

Hygiene Hypothesis

- Human evolution: humans and microbes highly interactive
 - Last 100+ years, antibiotics, improvement in hygiene has decreased this interaction in developed countries
 - Our immune system now lacks the interaction for which it evolved
 increased incidence of auto-immune diseases, asthma/atopy in developed countries
 - Treating auto-immune diseases with parasites

How about brain-microbe interaction affecting the inflammatory state of the brain?

Future Directions

Transcriptionally profile neurons that have cleared *Toxoplasma*

Use distinct strains to understand how host cells are differentially manipulated

 Use distinct strains to define how *Toxoplasma* establishes a neuroprotective environment

Evidence

- Alzheimer's disease:
 - Microglia "pro-inflammatory"
 - Ab exacerbates
 - Neuronal autophagy decreased → leads to inability to clear Ab
- Normal aging
 - C1q- component of complement system; increases in aging
 - Parabiosis of old and young: serum factor that improves aging
- Fix age-associated immune dysfunction, fix multiple diseases?

Toxoplasma infects all CNS cells but only persists in neurons

Toxoplasma predominantly interacts with neurons

dpi	Identified	Astrocytes	Neurons
10	42	8	34
20	252	10	242
40	81	2	79
80	90	0	90

Clinical Implications of CNS toxoplasmosis

Normal

Congenital Doxpatiantosis

Red Book Online Visual Library, 2006. Image 139_03. Available at: http://aapredbook.aappublications.org/visual. Accessed February 21, 2007